Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(5): 2992-3000, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24338014

RESUMO

Plasma plasminogen is the precursor of the tumor angiogenesis inhibitor, angiostatin. Generation of angiostatin in blood involves activation of plasminogen to the serine protease plasmin and facilitated cleavage of two disulfide bonds and up to three peptide bonds in the kringle 5 domain of the protein. The mechanism of reduction of the two allosteric disulfides has been explored in this study. Using thiol-alkylating agents, mass spectrometry, and an assay for angiostatin formation, we show that the Cys(462)-Cys(541) disulfide bond is already cleaved in a fraction of plasma plasminogen and that this reduced plasminogen is the precursor for angiostatin formation. From the crystal structure of plasminogen, we propose that plasmin ligands such as phosphoglycerate kinase induce a conformational change in reduced kringle 5 that leads to attack by the Cys(541) thiolate anion on the Cys(536) sulfur atom of the Cys(512)-Cys(536) disulfide bond, resulting in reduction of the bond by thiol/disulfide exchange. Cleavage of the Cys(512)-Cys(536) allosteric disulfide allows further conformational change and exposure of the peptide backbone to proteolysis and angiostatin release. The Cys(462)-Cys(541) and Cys(512)-Cys(536) disulfides have -/+RHHook and -LHHook configurations, respectively, which are two of the 20 different measures of the geometry of a disulfide bond. Analysis of the structures of the known allosteric disulfide bonds identified six other bonds that have these configurations, and they share some functional similarities with the plasminogen disulfides. This suggests that the -/+RHHook and -LHHook disulfides, along with the -RHStaple bond, are potential allosteric configurations.


Assuntos
Angiostatinas/metabolismo , Dissulfetos/metabolismo , Fibrinolisina/metabolismo , Plasminogênio/metabolismo , Precursores de Proteínas/metabolismo , Regulação Alostérica , Angiostatinas/química , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Fibrinolisina/química , Humanos , Oxirredução , Plasminogênio/química , Precursores de Proteínas/química , Estrutura Terciária de Proteína , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
2.
Thromb Haemost ; 111(1): 29-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24085288

RESUMO

Protease nexin-1 (PN-1) belongs to the serpin family and is an inhibitor of thrombin, plasmin, urokinase-type plasminogen activator, and matriptase. Recent studies have suggested PN-1 to play important roles in vascular-, neuro-, and tumour-biology. The serpin inhibitory mechanism consists of the serpin presenting its so-called reactive centre loop as a substrate to its target protease, resulting in a covalent complex with the inactivated enzyme. Previously, three mechanisms have been proposed for the inactivation of serpins by monoclonal antibodies: steric blockage of protease recognition, conversion to an inactive conformation or induction of serpin substrate behaviour. Until now, no inhibitory antibodies against PN-1 have been thoroughly characterised. Here we report the development of three monoclonal antibodies binding specifically and with high affinity to human PN-1. The antibodies all abolish the protease inhibitory activity of PN-1. In the presence of the antibodies, PN-1 does not form a complex with its target proteases, but is recovered in a reactive centre cleaved form. Using site-directed mutagenesis, we mapped the three overlapping epitopes to an area spanning the gap between the loop connecting α-helix F with ß-strand 3A and the loop connecting α-helix A with ß-strand 1B. We conclude that antibody binding causes a direct blockage of the final critical step of protease translocation, resulting in abortive inhibition and premature release of reactive centre cleaved PN-1. These new antibodies will provide a powerful tool to study the in vivo role of PN-1's protease inhibitory activity.


Assuntos
Anticorpos Monoclonais/química , Serpina E2/antagonistas & inibidores , Serpina E2/química , Afinidade de Anticorpos , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Mapeamento de Epitopos , Escherichia coli/metabolismo , Glicosilação , Heparina/química , Humanos , Cinética , Mutagênese Sítio-Dirigida , Neoplasias/metabolismo , Peptídeo Hidrolases/química , Conformação Proteica , Transporte Proteico , Serpina E2/genética , Ressonância de Plasmônio de Superfície , Fatores de Tempo
3.
Front Biosci (Landmark Ed) ; 14(4): 1337-61, 2009 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-19273134

RESUMO

PAI-1 is a Mr ~50,000 glycoprotein, which is the primary physiological inhibitor of the two plasminogen activators uPA and tPA. PAI-1 belongs to the serpin protein family. Studies of PAI-1 have contributed significantly to the elucidation of the protease inhibitory mechanism of serpins, which is based on a metastable native state becoming stabilised by insertion of the RCL into the central beta-sheet A and formation of covalent complexes with target proteases. In PAI-1, this insertion can occur in the absence of the protease, resulting in generation of a so-called latent, inactive form of the protein. PAI-1, in its active state, also binds to the extracellular protein vitronectin. When in complex with its target proteases, it binds with high affinity to endocytosis receptors of the low density receptor family.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/metabolismo , Biopolímeros , Endocitose , Humanos , Inibidor 1 de Ativador de Plasminogênio/química , Ligação Proteica , Conformação Proteica , Receptores de LDL/metabolismo
4.
Mol Pharmacol ; 74(3): 641-53, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18559377

RESUMO

The serpin plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of plasminogen activators and a potential therapeutic target in cancer and cardiovascular diseases. Accordingly, formation of a basis for development of specific PAI-1-inactivating agents is of great interest. One possible inactivation mode for PAI-1 is conversion to the inactive, so-called latent state. We have now screened a phage-displayed peptide library with PAI-1 as bait and isolated a 31-residue cysteine-rich peptide that will be referred to as paionin-4. A recombinant protein consisting of paionin-4 fused to domains 1 and 2 of the phage coat protein g3p caused a 2- to 3-fold increase in the rate of spontaneous inactivation of PAI-1. Paionin-4-D1D2 bound PAI-1 with a K(D) in the high nanomolar range. Using several biochemical and biophysical methods, we demonstrate that paionin-4-D1D2-stimulated inactivation consists of an acceleration of conversion to the latent state. As demonstrated by site-directed mutagenesis and competition with other PAI-1 ligands, the binding site for paionin-4 was localized in the loop between alpha-helix D and beta-strand 2A. We also demonstrate that a latency-inducing monoclonal antibody has an overlapping, but not identical binding site, and accelerates latency transition by another mechanism. Our results show that paionin-4 inactivates PAI-1 by a mechanism clearly different from other peptides, small organochemical compounds, or antibodies, whether they cause inactivation by stimulating latency transition or by other mechanisms, and that the loop between alpha-helix D and beta-strand 2A can be a target for PAI-1 inactivation by different types of compounds.


Assuntos
Peptídeos/farmacologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Epitopos , Heparina/metabolismo , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Inibidor 1 de Ativador de Plasminogênio/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Ressonância de Plasmônio de Superfície , Termodinâmica
5.
Biochem J ; 412(3): 447-57, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18318660

RESUMO

uPA (urokinase-type plasminogen activator) is a potential therapeutic target in a variety of pathological conditions, including cancer. In order to find new principles for inhibiting uPA in murine cancer models, we screened a phage-displayed peptide library with murine uPA as bait. We thereby isolated several murine uPA-binding peptide sequences, the predominant of which was the disulfide-bridged constrained sequence CPAYSRYLDC, which we will refer to as mupain-1. A chemically synthesized peptide corresponding to this sequence was found to be a competitive inhibitor of murine uPA, inhibiting its activity towards a low-molecular-mass chromogenic substrate as well as towards its natural substrate plasminogen. The K(i) value for inhibition as well as the K(D) value for binding were approx. 400 nM. Among a variety of other murine and human serine proteases, including trypsin, mupain-1 was found to be highly selective for murine uPA and did not even measurably inhibit human uPA. The cyclic structure of mupain-1 was indispensable for binding. Alanine scanning mutagenesis identified Arg(6) of mupain-1 as the P1 residue and indicated an extended binding interaction including the P5, P3, P2, P1 and P1' residues of mupain-1 and the specificity pocket, the catalytic triad and amino acids 41, 99 and 192 located in and around the active site of murine uPA. Exchanging His(99) of human uPA by a tyrosine residue, the corresponding residue in murine uPA, conferred mupain-1 susceptibility on to the latter. Peptide-derived inhibitors, such as mupain-1, may provide novel mechanistic information about enzyme-inhibitor interactions, provide alternative methodologies for designing effective protease inhibitors, and be used for target validation in murine model systems.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Substituição de Aminoácidos , Animais , Humanos , Camundongos , Especificidade da Espécie , Ativador de Plasminogênio Tipo Uroquinase/química
6.
J Struct Biol ; 160(1): 1-10, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17692534

RESUMO

Urokinase-type plasminogen activator (uPA) plays a crucial role in the regulation of plasminogen activation, tumor cell adhesion and migration. The inhibition of uPA activity is a promising mechanism for anti-cancer therapy. A cyclic peptidyl inhibitor, upain-1, CSWRGLENHRMC, was identified recently as a competitive and highly specific uPA inhibitor. We determined the crystal structure of uPA in complex with upain-1 at 2.15 A. The structure reveals that the cyclic peptide adopts a rigid conformation stabilized by a disulfide bond (residues 1-12) and three tight beta turns (residues 3-6, 6-9, 9-12). The Glu7 residue of upain-1 forms hydrogen bonds with the main chain nitrogen atoms of residues 4, 5, and 6 of upain-1, and is also critical for maintaining the active conformation of upain-1. The Arg4 of upain-1 is inserted into the uPA's specific S1 pocket. The Ser2 residue of upain-1 locates close to the S1beta pocket of uPA. The Gly5 and Glu7 residues of upain-1 occupy the S2 pocket and the oxyanion hole of uPA, respectively. Furthermore, the Asn8 residue of upain-1 binds to the 37- and 60-loops of uPA and renders the specificity of upain-1 for uPA. Based on this structure, a new pharmacophore for the design of highly specific uPA inhibitors was proposed.


Assuntos
Inibidores Enzimáticos/farmacologia , Peptídeos Cíclicos/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Sequência de Aminoácidos , Inibidores Enzimáticos/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos Cíclicos/química , Conformação Proteica
7.
J Biol Chem ; 282(30): 21671-82, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17540775

RESUMO

Factor VII-activating protease (FSAP) is a novel plasma-derived serine protease structurally homologous to tissue-type and urokinase-type plasminogen activators. We demonstrate that plasminogen activator inhibitor-1 (PAI-1), the predominant inhibitor of tissue-type and urokinase-type plasminogen activators in plasma and tissues, is an inhibitor of FSAP as well. We detected PAI-1.FSAP complexes in addition to high levels of extracellular RNA, an important FSAP cofactor, in bronchoalveolar lavage fluids from patients with acute respiratory distress syndrome. Hydrolytic activity of FSAP was inhibited by PAI-1 with a second-order inhibition rate constant (K(a)) of 3.38 +/- 1.12 x 10(5) m(-1).s(-1). Residue Arg(346) was a critical recognition element on PAI-1 for interaction with FSAP. RNA, but not DNA, fragments (>400 nucleotides in length) dramatically enhanced the reactivity of PAI-1 with FSAP, and 4 microg.ml(-1) RNA increased the K(a) to 1.61 +/- 0.94 x 10(6) m(-1).s(-1). RNA also stabilized the active conformation of PAI-1, increasing the half-life for spontaneous conversion of active to latent PAI-1 from 48.4 +/- 8 min to 114.6 +/- 5 min. In contrast, little effect of DNA on PAI-1 stability was apparent. Residues Arg(76) and Lys(80) in PAI-1 were key elements mediating binding of nucleic acids to PAI-1. FSAP-driven inhibition of vascular smooth muscle cell proliferation was antagonized by PAI-1, suggesting functional consequences for the FSAP-PAI-1 interaction. These data indicate that extracellular RNA and PAI-1 can regulate FSAP activity, thereby playing a potentially important role in hemostasis and cell functions under various pathophysiological conditions, such as acute respiratory distress syndrome.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/metabolismo , Síndrome do Desconforto Respiratório/enzimologia , Serina Endopeptidases/sangue , Líquido da Lavagem Broncoalveolar/química , DNA/genética , DNA/isolamento & purificação , Humanos , RNA/genética , RNA/isolamento & purificação , Valores de Referência , Síndrome do Desconforto Respiratório/sangue , Testes de Função Respiratória , Serina Endopeptidases/genética
8.
J Biol Chem ; 281(47): 36071-81, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17018527

RESUMO

Latency transition of plasminogen activator inhibitor-1 (PAI-1) occurs spontaneously in the absence of proteases and results in stabilization of the molecule through insertion of its reactive center loop (RCL) as a strand in beta-sheet A and detachment of beta-strand 1C (s1C) at the C-terminal hinge of the RCL. This is one of the largest structural rearrangements known for a folded protein domain without a concomitant change in covalent structure. Yet, the sequence of conformational changes during latency transition remains largely unknown. We have now mapped the epitope for the monoclonal antibody H4B3 to the cleft revealed upon s1C detachment and shown that H4B3 inactivates recombinant PAI-1 in a time-dependent manner. With fluorescence spectroscopy, we show that insertion of the RCL is accelerated in the presence of H4B3, demonstrating that the loss of activity is the result of latency transition. Considering that the epitope for H4B3 appears to be occluded by s1C in active PAI-1, this finding suggests the existence of a pre-latent conformation on the path from active to latent PAI-1 characterized by at least partial detachment of s1C. Functional characterization of mutated PAI-1 variants suggests that a salt-bridge between Arg273 and Asp224 may stabilize the pre-latent conformation. The binding of H4B3 and of a peptide targeting the cleft revealed upon s1C detachment was hindered by the glycans attached to Asn267. Conclusively, we have provided evidence for the existence of an equilibrium between active PAI-1 and a pre-latent form, characterized by reversible detachment of s1C and formation of a glycan-shielded cleft in the molecule.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/fisiologia , Animais , Arginina/química , Ácido Aspártico/química , Sítios de Ligação , Mapeamento de Epitopos , Humanos , Cinética , Camundongos , Inibidor 1 de Ativador de Plasminogênio/química , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Vitronectina/química
9.
Biochem J ; 399(3): 387-96, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16813566

RESUMO

The functions of the serpin PAI-1 (plasminogen activator inhibitor-1) are based on molecular interactions with its target proteases uPA and tPA (urokinase-type and tissue-type plasminogen activator respectively), with vitronectin and with endocytosis receptors of the low-density-lipoprotein family. Understanding the significance of these interactions would be facilitated by the ability to block them individually. Using phage display, we have identified the disulfide-constrained peptide motif CFGWC with affinity for natural human PAI-1. The three-dimensional structure of a peptide containing this motif (DVPCFGWCQDA) was determined by liquid-state NMR spectroscopy. A binding site in the so-called flexible joint region of PAI-1 was suggested by molecular modelling and validated through binding studies with various competitors and site-directed mutagenesis of PAI-1. The peptide with an N-terminal biotin inhibited the binding of the uPA-PAI-1 complex to the endocytosis receptors low-density-lipoprotein-receptor-related protein 1A (LRP-1A) and very-low-density-lipoprotein receptor (VLDLR) in vitro and inhibited endocytosis of the uPA-PAI-1 complex in U937 cells. We conclude that the isolated peptide represents a novel approach to pharmacological interference with the functions of PAI-1 based on inhibition of one specific molecular interaction.


Assuntos
Endocitose/efeitos dos fármacos , Oligopeptídeos/farmacologia , Biblioteca de Peptídeos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptores de LDL/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Biotinilação , Linhagem Celular , Linhagem Celular Tumoral , Cristalografia por Raios X , Cistina/química , Fibrossarcoma/patologia , Humanos , Rim/citologia , Rim/embriologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/isolamento & purificação , Inibidor 1 de Ativador de Plasminogênio/genética , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Receptores de LDL/genética , Células U937 , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
10.
J Biol Chem ; 280(46): 38424-37, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16141208

RESUMO

To find new principles for inhibiting serine proteases, we screened phage-displayed random peptide repertoires with urokinase-type plasminogen activator (uPA) as the target. The most frequent of the isolated phage clones contained the disulfide bridge-constrained sequence CSWRGLENHRMC, which we designated upain-1. When expressed recombinantly with a protein fusion partner, upain-1 inhibited the enzymatic activity of uPA competitively with a temperature and pH-dependent K(i), which at 25 degrees C and pH 7.4 was approximately 500 nm. At the same conditions, the equilibrium dissociation constant K(D), monitored by displacement of p-aminobenzamidine from the specificity pocket of uPA, was approximately 400 nm. By an inhibitory screen against other serine proteases, including trypsin, upain-1 was found to be highly selective for uPA. The cyclical structure of upain-1 was indispensable for uPA binding. Alanine-scanning mutagenesis identified Arg(4) of upain-1 as the P(1) residue and indicated an extended binding interaction including the specificity pocket and the 37-, 60-, and 97-loops of uPA and the P(1), P(2), P(3)', P(4)', and the P(5)' residues of upain-1. Substitution with alanine of the P(2) residue, Trp(3), converted upain-1 into a distinct, although poor, uPA substrate. Upain-1 represents a new type of uPA inhibitor that achieves selectivity by targeting uPA-specific surface loops. Most likely, the inhibitory activity depends on its cyclical structure and the unusual P(2) residue preventing the scissile bond from assuming a tetrahedral geometry and thus from undergoing hydrolysis. Peptide-derived inhibitors such as upain-1 may provide novel mechanistic information about enzyme-inhibitor interactions and alternative methodologies for designing effective protease inhibitors.


Assuntos
Peptídeos Cíclicos/química , Ativador de Plasminogênio Tipo Uroquinase/química , Ácido 4-Aminobenzoico/química , Alanina/química , Sequência de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Proteínas do Capsídeo , Catálise , Linhagem Celular , DNA/química , Proteínas de Ligação a DNA/química , Dissulfetos/química , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Fator Xa/química , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeo Hidrolases/química , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos Cíclicos/fisiologia , Plasminogênio/química , Inibidores de Proteases/farmacologia , Ligação Proteica , Proteína C/química , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Especificidade por Substrato , Temperatura , Termodinâmica , Fatores de Tempo , Tripsina/química , Células U937 , Proteínas Virais de Fusão/química
11.
FEBS Lett ; 579(2): 541-8, 2005 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-15642373

RESUMO

The diverse effects of different natural and synthetic oestrogen receptor ligands depend on induction of different receptor conformations, allowing differential interactions with other transcription factors. Different conformations of the oestrogen receptor ligand binding domains can be monitored by conformation-specific binding to peptides selected from phage-displayed peptide libraries. We now report that a group of chlorinated pesticides, including 2,4-dichlorodiphenyl-dichloroethylene, induces a peptide recognition pattern different from those induced by any one of the classical oestrogen receptor ligands. The pesticide-complexed oestrogen receptors recognized peptides reacting with the receptors complexed both with the natural oestrogen 17beta-oestradiol and with the synthetic partial antagonist 4-hydroxy-tamoxifen, respectively, indicating that the pesticide-induced conformation shares features with both the 17beta-oestradiol- and the 4-hydroxy-tamoxifen-induced conformations. The substitution H524A in the ligand binding domain conferred the pesticide-specific peptide recognition pattern and transactivation activity to the oestradiol- and the 4-hydroxy-tamoxifen-complexed receptors, indicating that one important determinant of the pesticide-induced conformation is a lack of stabilisation of any one particular receptor conformation by ligand interaction with H524, which is known to interact with both oestradiol and 4-hydroxy-tamoxifen. Thus, peptide binding analyses of oestrogen receptor conformations induced by environmental endocrine disruptors can give novel information about molecular mechanisms of oestrogen action in general.


Assuntos
Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/química , Receptor beta de Estrogênio/efeitos dos fármacos , Peptídeos/metabolismo , Praguicidas/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/análogos & derivados , Substituição de Aminoácidos/genética , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Células CHO , Compostos Clorados/farmacologia , Cricetinae , Cricetulus , Diclorodifenil Dicloroetileno/farmacologia , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Genes Reporter/genética , Ligantes , Luciferases/análise , Luciferases/genética , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/genética , Tamoxifeno/metabolismo , Ativação Transcricional
12.
Biochim Biophys Acta ; 1691(1): 17-22, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15053920

RESUMO

Solid tumour cells employ glycolytic enzymes including phosphoglycerate kinase (PGK) to make ATP when their supply of oxygen is limiting. PGK is also secreted by tumour cells and facilitates cleavage of disulfide bonds in plasmin, which triggers proteolytic release of the angiogenesis inhibitor, angiostatin. Although PGK production by tumour cells was enhanced by hypoxia, its secretion was inhibited. Inhibition of secretion correlated with decrease in angiostatin formation by the tumour cells. In contrast, hypoxia did not inhibit the secretion of the angiogenesis activator, vascular endothelial cell growth factor (VEGF). PGK secretion was reversed by normoxia and was under control of the oxygen-sensing protein hydroxylases, as inhibitors of this class of enzymes mimicked the effect of hypoxia on PGK secretion. Direct hydroxylation of PGK was not the mechanism by which the protein hydroxylases controlled its secretion. These findings show that production and secretion of PGK are regulated separately and indicate that oxygen and the protein hydroxylases can control not only gene expression but also protein secretion.


Assuntos
Hipóxia/enzimologia , Oxigenases de Função Mista/fisiologia , Neoplasias/patologia , Fosfoglicerato Quinase/metabolismo , Angiostatinas/biossíntese , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Humanos , Hidroxilação , Neoplasias/enzimologia , Neoplasias/metabolismo , Oxigênio/farmacologia , Fosfoglicerato Quinase/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese
13.
Thromb Haemost ; 91(3): 438-49, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14983218

RESUMO

In recent decades, evidence has been accumulating showing the important role of urokinase-type plasminogen activator (uPA) in growth, invasion, and metastasis of malignant tumours. The evidence comes from results with animal tumour models and from the observation that a high level of uPA in human tumours is associated with a poor patient prognosis. It therefore initially came as a surprise that a high tumour level of the uPA inhibitor plasminogen activator inhibitor-I (PAI-I) is also associated with a poor prognosis, the PAI-I level in fact being one of the most informative biochemical prognostic markers. We review here recent investigations into the possible tumour biological role of PAI-I, performed by animal tumour models, histological examination of human tumours, and new knowledge about the molecular interactions of PAI-I possibly underlying its tumour biological functions. The exact tumour biological functions of PAI-I remain uncertain but PAI-I seems to be multifunctional as PAI-I is expressed by multiple cell types and has multiple molecular interactions. The potential utilisation of PAI-I as a target for anti-cancer therapy depends on further mapping of these functions.


Assuntos
Neoplasias da Mama/patologia , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Membrana Celular/metabolismo , Modelos Animais de Doenças , Endopeptidases/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , Ligação Proteica , Conformação Proteica , Vitronectina/metabolismo
14.
FEBS Lett ; 556(1-3): 175-9, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14706846

RESUMO

Vitronectin (VN) and plasminogen activator inhibitor-1 (PAI-1) have important functional interactions: VN stabilises the protease inhibitory activity of PAI-1 and PAI-1 inhibits binding of adhesion receptors to VN. Having previously mapped the PAI-1 binding area for VN, we have now constructed a PAI-1 variant, R103A-M112A-Q125A, without measurable affinity to VN, but with full protease inhibitory activity and endocytosis receptor binding. As a tool for evaluating the physiological and pathophysiological functions of the PAI-1-VN interaction, our new variant is far superior to the previously widely used PAI-1 variant Q125K, which we have found possesses an only about 10-fold reduced affinity to VN.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Vitronectina/metabolismo , Substituição de Aminoácidos , Naftalenossulfonato de Anilina/química , Naftalenossulfonato de Anilina/metabolismo , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Ligação Competitiva , Linhagem Celular , Escherichia coli/metabolismo , Variação Genética , Meia-Vida , Humanos , Concentração Inibidora 50 , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Ensaio Radioligante , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Ressonância de Plasmônio de Superfície , Células U937 , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
15.
Blood ; 103(2): 627-9, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14512317

RESUMO

Severe deficiency of the von Willebrand Factor (VWF)-cleaving proteinase, ADAMTS13, is associated with the development of thrombotic thrombocytopenic purpura (TTP). Several mutations spread across the ADAMTS13 gene have been identified in association with a deficiency of VWF-cleaving proteinase activity in patients with congenital TTP. The spread of these dysfunctional mutations and the domain structure of ADAMTS13 are suggestive of a complex interaction between the enzyme and its substrate. We have studied a patient with congenital TTP who is a compound heterozygote for the Thr196Ile mutation in the metalloproteinase domain and a frameshift mutation (4143-4144insA) in the second CUB domain that results in loss of the last 49 amino acids of the protein. The VWF-cleaving proteinase activity of the truncated enzyme was comparable to that of the wild-type enzyme but its secretion from transfected COS-7 cells was about 14% of the wild type.


Assuntos
Mutação da Fase de Leitura , Metaloendopeptidases/genética , Púrpura Trombocitopênica Trombótica/congênito , Púrpura Trombocitopênica Trombótica/genética , Proteínas ADAM , Proteína ADAMTS13 , Animais , Sequência de Bases , Sítios de Ligação , Células COS , Chlorocebus aethiops , Humanos , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Modelos Moleculares , Polimorfismo de Nucleotídeo Único/genética , Conformação Proteica , Transfecção , Fator de von Willebrand/genética
16.
Biochem J ; 373(Pt 3): 723-32, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12723974

RESUMO

XR5118 [(3 Z,6 Z )-6-benzylidine-3-(5-(2-dimethylaminoethyl-thio-))-2-(thienyl)methylene-2,5-dipiperazinedione hydrochloride] can inactivate the anti-proteolytic activity of the serpin plasminogen activator inhibitor-1 (PAI-1), a potential therapeutic target in cancer and cardiovascular diseases. Serpins inhibit their target proteases by the P(1) residue of their reactive centre loop (RCL) forming an ester bond with the active-site serine residue of the protease, followed by insertion of the RCL into the serpin's large central beta-sheet A. In the present study, we show that the RCL of XR5118-inactivated PAI-1 is inert to reaction with its target proteases and has a decreased susceptibility to non-target proteases, in spite of a generally increased proteolytic susceptibility of specific peptide bonds elsewhere in PAI-1. The properties of XR5118-inactivated PAI-1 were different from those of the so-called latent form of PAI-1. Alanine substitution of several individual residues decreased the susceptibility of PAI-1 to XR5118. The localization of these residues in the three-dimensional structure of PAI-1 suggested that the XR5118-induced inactivating conformational change requires mobility of alpha-helix F, situated above beta-sheet A, and is in agreement with the hypothesis that XR5118 binds laterally to beta-sheet A. These results improve our understanding of the unique conformational flexibility of serpins and the biochemical basis for using PAI-1 as a therapeutic target.


Assuntos
Piperazinas/farmacologia , Inibidor 1 de Ativador de Plasminogênio/química , Vitronectina/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Mutagênese Sítio-Dirigida , Inibidor 1 de Ativador de Plasminogênio/genética
17.
Eur J Biochem ; 270(8): 1672-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12694180

RESUMO

Plasminogen activator inhibitor-1 (PAI-1) belongs to the serpin family of serine proteinase inhibitors. Serpins inhibit their target proteinases by an ester bond being formed between the active site serine of the proteinase and the P1 residue of the reactive centre loop (RCL) of the serpin, followed by insertion of the RCL into beta-sheet A of the serpin. Concomitantly, there are conformational changes in the flexible joint region lateral to beta-sheet A. We have now, by site-directed mutagenesis, mapped the epitope for a monoclonal antibody, which protects the inhibitory activity of PAI-1 against inactivation by a variety of agents acting on beta-sheet A and the flexible joint region. Curiously, the epitope is localized in alpha-helix C and the loop connecting alpha-helix I and beta-strand 5A, on the side of PAI-1 opposite to beta-sheet A and distantly from the flexible joint region. By a combination of site-directed mutagenesis and antibody protection against an inactivating organochemical ligand, we were able to identify a residue involved in conferring the antibody-induced conformational change from the epitope to the rest of the molecule. We have thus provided evidence for communication between secondary structural elements not previously known to interact in serpins.


Assuntos
Anticorpos Monoclonais/química , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/imunologia , Especificidade de Anticorpos , Sítios de Ligação , Clonagem Molecular , Epitopos/química , Escherichia coli , Humanos , Cinética , Modelos Moleculares , Mutagênese Insercional , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo
18.
Eur J Biochem ; 270(8): 1680-8, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12694181

RESUMO

The serpin plasminogen activator inhibitor-1 (PAI-1) is a fast and specific inhibitor of the plasminogen activating serine proteases tissue-type and urokinase-type plasminogen activator and, as such, an important regulator in turnover of extracellular matrix and in fibrinolysis. PAI-1 spontaneously loses its antiproteolytic activity by inserting its reactive centre loop (RCL) as strand 4 in beta-sheet A, thereby converting to the so-called latent state. We have investigated the importance of the amino acid sequence of alpha-helix F (hF) and the connecting loop to s3A (hF/s3A-loop) for the rate of latency transition. We grafted regions of the hF/s3A-loop from antithrombin III and alpha1-protease inhibitor onto PAI-1, creating eight variants, and found that one of these reversions towards the serpin consensus decreased the rate of latency transition. We prepared 28 PAI-1 variants with individual residues in hF and beta-sheet A replaced by an alanine. We found that mutating serpin consensus residues always had functional consequences whereas mutating nonconserved residues only had so in one case. Two variants had low but stable inhibitory activity and a pronounced tendency towards substrate behaviour, suggesting that insertion of the RCL is held back during latency transition as well as during complex formation with target proteases. The data presented identify new determinants of PAI-1 latency transition and provide general insight into the characteristic loop-sheet interactions in serpins.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Análise Mutacional de DNA/métodos , Escherichia coli/genética , Meia-Vida , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores
19.
Biochem J ; 372(Pt 3): 747-55, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12656676

RESUMO

Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units. As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly converted to reactive centre-cleaved monomers, indicating substrate behaviour of the terminal PAI-1 molecules in the polymers. A quadruple mutant of PAI-1 with a retarded rate of latency transition also had a retarded rate of polymerization. Studying a number of serpins by native gel electrophoresis, ligand-induced polymerization was observed only with PAI-1 and heparin cofactor II, which were also able to copolymerize. On the basis of these results, we suggest that the binding of ligands in a specific region of PAI-1 leads to so-called loop-sheet polymerization, in which the reactive centre loop of one molecule binds to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general.


Assuntos
Biopolímeros/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biopolímeros/química , Eletroforese em Gel de Poliacrilamida , Cofator II da Heparina/farmacologia , Temperatura Alta , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Papaína/metabolismo , Inibidor 1 de Ativador de Plasminogênio/química , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serpinas/metabolismo , Espectrometria de Fluorescência/métodos , Ativador de Plasminogênio Tipo Uroquinase/farmacologia
20.
FEBS Lett ; 521(1-3): 91-4, 2002 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-12067733

RESUMO

A distinguishing feature of serpins is their ability to undergo a conformational change consisting in insertion of the reactive centre loop (RCL) into beta-sheet A. In the serpin plasminogen activator inhibitor-1 (PAI-1), RCL movements are regulated by vitronectin, having a previously poorly defined binding site lateral to PAI-1's beta-sheet A. Using a novel strategy, based on identification of amino acid residues necessary for vitronectin protection of PAI-1 against inactivation by 4,4'-dianilino-1,1'-bisnaphthyl-5,5'-disulfonic acid, we have defined a vitronectin binding surface spanning 10 residues between alpha-helix F, beta-strand 2A, and alpha-helix E. Our results contribute to elucidating the unique serpin conformational change.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/química , Vitronectina/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Inibidor 1 de Ativador de Plasminogênio/genética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...